f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ajc

NAG C Library Function Document

nag_dorglq (f08ajc)

1 Purpose

nag_dorglq (f08ajc) generates all or part of the real orthogonal matrix) from an L() factorization
computed by nag_dgelqf (f08ahc).

2 Specification

void nag_dorglq (Nag_OrderType order, Integer m, Integer n, Integer k, double al[],
Integer pda, const double tau[], NagError *fail)

3 Description

nag_dorglq (f08ajc) is intended to be used after a call to nag dgelqf (f08ahc), which performs an L@
factorization of a real matrix A. The orthogonal matrix () is represented as a product of elementary
reflectors.

This function may be used to generate () explicitly as a square matrix, or to form only its leading rows.

Usually @ is determined from the L() factorization of a p by n matrix A with p < n. The whole of @
may be computed by:

nag_dorglg (order,n,n,p,&a,pda,tau,&fail)
(note that the array a must have at least n rows) or its leading p rows by:
nag_dorglg (order,p,n,p,&a,pda,tau,&fail)

The rows of () returned by the last call form an orthonormal basis for the space spanned by the rows of A;
thus nag_dgelqf (f08ahc) followed by nag dorglq (f08ajc) can be used to orthogonalise the rows of A.

The information returned by the L() factorization functions also yields the L() factorization of the leading
k rows of A, where k < p. The orthogonal matrix arising from this factorization can be computed by:

nag_dorglg (order,n,n,k,&a,pda,tau,&fail)
or its leading k rows by:

nag_dorglg (order,k,n,k,&a,pda,tau,&fail)

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m — Integer Input
On entry: m, the number of rows of the matrix Q.

Constraint: m > 0.

[NP3645/7] f08ajc.1

f08ajc NAG C Library Manual

3: n — Integer Input
On entry: n, the number of columns of the matrix Q.

Constraint: n > m.

4: k — Integer Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraint: m > k > 0.

5: a[dim] — double Input/Output

Note: the dimension, dim, of the array a must be at least max(l,pda x n) when
order = Nag_ColMajor and at least max(1, pda x m) when order = Nag RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i,7)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag dgelqf
(f08ahc).

On exit: the m by n matrix Q.

6: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor, pda > max(1, m);
if order = Nag RowMajor, pda > max(1,n).
7: tau[dim] — const double Input
Note: the dimension, dim, of the array tau must be at least max(1,Kk).

On entry: further details of the elementary reflectors, as returned by nag dgelqf (f08ahc).

8: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, pda = (value).
Constraint: pda > 0.
NE_INT_2

On entry, n = (value), m = (value).
Constraint: n > m.

On entry, m = (value), k = (value).
Constraint: m > k > 0.

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

f08ajc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ajc

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The computed matrix @) differs from an exactly orthogonal matrix by a matrix F such that
1E]l, = O(e),

where ¢ is the machine precision.

8 Further Comments
The total number of floating-point operations is approximately 4mnk — 2(m + n)k* + %kS; when m =k,
the number is approximately 2m”(3n — m).

The complex analogue of this function is nag_zunglq (f08awc).

9 Example

To form the leading 4 rows of the orthogonal matrix () from the L) factorization of the matrix A, where

—5.42 328 —-3.68 027 206 046
—-1.65 —-340 -320 -1.03 —4.06 -0.01
—-0.37 235 1.90 431 -1.76 1.13
—-3.15 —0.11 1.99 =-2.70 026 4.50

A=

The rows of () form an orthonormal basis for the space spanned by the rows of A.

9.1 Program Text

/* nag_dorglg (f08ajc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, m, n, pda, tau_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
char *title=0;
double *a=0, *tau=0;

[NP3645/7] 8ajc.3

f08ajc

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al[(J-1)*pda + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08ajc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("$*[*\n] ");

Vscanf ("$1d%1d%*["\n] ", &m, &n);
#ifdef NAG_COLUMN_MAJOR

pda = m;
#else

pda = n;
#endif

tau_len = m;

/* Allocate memory */

if (!(title = NAG_ALLOC(31, char)) ||
! (a = NAG_ALLOC(m * n, double)) ||

!'(tau = NAG_ALLOC(m, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
for (i = 1; i <= m; ++1i)
{
for (j = 1; j <= n; ++3)
Vscanf ("s1f", &A(i,j));
}

Vscanf ("s*x[*\n] ");

/* Compute the LQ factorization of A */
fO08ahc(order, m, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ahc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Form the leading M rows of Q explicitly =*/
f08ajc(order, m, n, m, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ajc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print the leading M rows of Q only */
Vsprintf (title, "The leading %21d rows of Q\n", m);

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, m, n,

a, pda, title, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:

if (title) NAG_FREE(title);
if (a) NAG_FREE (a);

f08ajc.4

NAG C Library Manual

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

if (tau)

return exit_status;

3

9.2 Program Data

NAG_FREE (tau) ;

f08ajc Example Program Data

f08ajc

4 6 :Values of M and N

-5.42 3.28 -3.68 0.27 2.06 0.46

-1.65 -3.40 -3.20 -1.03 -4.06 -0.01

-0.37 2.35 1.90 4.31 -1.76 1.13

-3.15 -0.11 1.99 -=2.70 0.26 4.50 :End of matrix A
9.3 Program Results
f08ajc Example Program Results

The leading 4 rows of Q

1 2 3 4 5 6

1 -0.7104 0.4299 -0.4824 0.0354 0.2700 0.0603

2 -0.2412 -0.5323 -0.4845 -0.1595 -0.6311 -0.0027

3 0.1287 -0.2619 -0.2108 -0.7447 0.5227 -0.2063

4 -0.3403 -0.0921 0.4546 -0.3869 -0.0465 0.7191
[NP3645/7] f08ajc.5 (last)

	f08ajc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	k
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

